ZK Move Rollup

Moved Network

moved.network

Abstract

The Move programming language offers a secure and auditable
framework for developing smart contracts. However, existing Move-
based blockchains face challenges with limited ecosystem traction
and low liquidity bottlenecks. This whitepaper introduces Moved, a
groundbreaking layer 2 zero-knowledge (ZK) rollup tailored for the
Move language, enabling developers to build scalable decentralized
applications while leveraging the liquidity and network effects of
the Ethereum mainnet. Moved features a parallelized ZK proving
architecture optimized to execute Move bytecode efficiently, achieving
unprecedented scalability through advanced cryptography and exe-
cution models. By processing transactions off-chain in parallel and
generating succinct ZK-Proofs, Moved inherits Ethereum’s security
while achieving orders-of-magnitude higher throughput than execut-
ing transactions directly on Ethereum. This paper presents Moved’s
architecture design, including the parallelized ZK infrastructure,
optimized Move execution, state-of-the-art ZK-Proof system, and
Merkelization techniques that minimize on-chain data footprint by
keeping full account states off Ethereum Layer 1; only storing state
and transaction hashes.

1 Introduction

The inception of Bitcoin in 2008 [8] ushered in a new era of decentralized
and trustless computation facilitated by blockchain technology. While Bit-
coin’s core purpose was enabling peer-to-peer digital cash, it laid the founda-
tional primitives for a more generalized blockchain framework. Ethereum [5],

introduced in 2015, built upon these primitives by incorporating a Turing-
complete virtual machine, paving the way for executable smart contracts and
decentralized applications (dapps). The Ethereum Virtual Machine (EVM)
is a stack-based VM with a Turing complete instruction set that enables
the deployment and execution of user-defined bytecode programs on the
Ethereum blockchain. This revolutionary model of distributed computation
rapidly catalyzed innovation, giving rise to decentralized finance (DeF1i), non-
fungible tokens (NFTs), decentralized autonomous organizations (DAOs),
among other blockchain-native applications and use cases.

Solidity vs Move. While Solidity became the de facto language for
Ethereum smart contract development, it suffers from inherent security risks
stemming from semantic ambiguities, lack of formalism, and code complexity
[12]. These vulnerabilities have led to numerous high-profile exploits resulting
in substantial financial losses, most notably the infamous 2016 DAO attack
[6] which drained around $60 million in ether at the time, as well as the more
recent $190 million Nomad bridge hack [9] in 2022. The Move language [3],
originally designed at Meta (Facebook) for the Diem blockchain, emerged as a
safer and more robust alternative to Solidity. Move employs a bytecode inter-
pretation execution model and follows a strict design philosophy focused on
simplicity, auditability, and prevention of unintended behaviors. With influ-
ences from linear logic and secure coding principles, Move mitigates many of
Solidity’s pitfalls by preventing re-entrancy, data races, and other common
vulnerabilities through its design that allows only a single execution con-
text to access resources at any given time. Despite its security advantages,
the Move ecosystem has faced challenges with limited liquidity, hindering
widespread adoption compared to the more established Ethereum /Solidity
landscape.

Moved Network Solution. To unlock Move’s full potential while in-
heriting Ethereum’s unparalleled liquidity and network effects, we introduce
Moved - a novel zero-knowledge (ZK) rollup architecture tailored for the
Move language. Moved enables Move smart contract execution by leverag-
ing ZK virtual machine technology, allowing computations to be performed
off-chain while allowing clients to know the execution is correct. Addition-
ally, with the proofs and state merkle roots being posted to the Ethereum
blockchain, clients of Moved benefit from the security of the Ethereum chain.
Our initial ZK infrastructure builds upon Risc Zero’s [4] general-purpose

zkVM, providing a secure and flexible foundation. Looking ahead, we plan
to integrate Polygon’s Miden VM [11], optimized specifically for efficient
Move bytecode execution, unlocking even greater performance gains.
Central to Moved is a modular rollup design that prioritizes scalability,
parallelization, and flexibility. We employ parallel execution techniques to
maximize throughput, with the ability to run multiple Move virtual machines
concurrently. Transaction data is aggregated into periodic ZK-Proofs that
are settled on the Ethereum mainnet, inheriting its security guarantees. Our
architecture remains flexible, enabling integration of the most efficient and
available ZK tooling to provide fast finality. This agile approach ensures
Moved can adapt to emerging innovations, consistently delivering a high-
throughput layer 2 scaling solution as the ZK ecosystem evolves.

Outline. Rest of the paper is organized as follows. In Section 2 we
give an overview of the Moved’s modular rollup solution; in 3 we describe in
detail how the ZK execution part of the system is designed; then lastly in
Section 4 we describe the SDK for developer experience and detail the gas
computation on the native ETH token.

2 Decentralized Rollup

The Moved rollup is composed of three modular components, each serving
a specialized role as depicted in Figure 1. The Sequencer is responsible for
ordering and batching incoming transactions, maintaining a consistent and
tamper-proof transaction log. The provers run the batches of transactions
generated by the sequencers to produce ZK proofs and state updates that are
periodically submitted (e.g. every 12 hours) to the Verifier Contract. More
details on the ZK execution the provers perform are given in the next sec-
tion. The Verifier Contract, deployed on the Ethereum mainnet, acts as the
ultimate arbiter, validating the ZK-Proofs against the corresponding Merkle
roots and updating the canonical state on Layer 1. The Data Availability
(DA) layer, such as Celestia [1], keeps the actual state that is behind the
Merkle roots submitted to Layer 1 (Ethereum). Clients access the DA layer
to query the state of the system (e.g. check what resources an account holds).
The DA layer must provide a Merkle proof with its response so that the client
can validate the state is correct using the Merkle root that is available from
the Verifier Contract.

Q Clients Q
!

p
Data Sequencer
Availability

N

Provers

o
txn.i I)
txn.i+1 G) ~N 1::} 1::}
“—> txn.i+2 / de%};_J «—>
| O))
)
~Ne
-

&

Mempool

. J/

F 3

[L1 Chain @ il j

Figure 1: High-level architecture of the Moved ZK rollup, depicting the inter-
action between user applications, the sequencer, ZK virtual machines, data
availability storage, and the Ethereum L1 verifier contract.

Modularity is a core tenet of the Moved rollup architecture, enabling con-
tinuous improvement and optimization of individual components. As more
performant technologies emerge, we can seamlessly swap out and upgrade the
Sequencer, Data Availability, or Verifier components without disrupting the
overall system. Additionally, a dedicated Bridge Contract enables seamless
liquidity flows between the Moved rollup and the Ethereum mainnet. Specif-
ically, this bridge facilitates transfers of native ETH as well as ERC-20 stan-
dard tokens, allowing users to deposit assets from Ethereum into the Moved
Network and withdraw them from Moved back to the Ethereum mainnet. In
the initial phases, we plan to leverage specific, battle-tested rollup providers
and infrastructure. Specifically, we intend to utilize Sovereign SDK [13] for
their ZK Rollup support and integrate Celestia as the Data Availability layer.
As the ecosystem matures, we will gradually introduce optimizations such as
computing ZK-Proofs at the bytecode level to remove overhead and improve
computational speed. Another optimization involves integrating a higher
throughput sequencer to accelerate transaction ordering and improve overall
system performance.

3 Zero Knowledge Execution

To achieve scalable Move smart contract execution while inheriting L1 secu-
rity, Moved employs a ZK rollup architecture. ZK rollups leverage ZK-Proofs
to validate the correctness of off-chain computations, enabling scalability by
shifting the bulk of execution off the main Ethereum chain. Along with the
ZK-Proof, the client obtains the Merkle root of the new state after execu-
tion of the batch of transactions. Both the proof and the new state root are
sent the Ethereum network, effectively recording the validated execution of
each Move transaction within the Moved rollup architecture while inheriting
Ethereum’s underlying security guarantees.

Our ZK execution will be developed in two phases. This allows us to get
to market quickly while having an eye towards reducing our infrastructure
costs in the future.

3.1 Phasel

During this first phase, Moved utilizes a base Move virtual machine for smart
contract execution, stripped from native code support found in chains like

Data Availability Host Guest (ZK Env)

Sparse Merkle Tree
E— { State from DA } — Move VM

',Cl - State Writeset
{ Transaction from Seq } ZK Proof

(a) Step 1: Guest executions receive state and transaction data to run Move VM,
producing state writeset and ZK-Proof outputs.

Data Availability Host Guest (ZK Env)

Sparse Merkle Tree MNew Root

¢ writeset.i proof.i ¢ » .
@) writeset.i+1 proof.i+1 Recursive Proof

writeset.i+2 proof.i+2 ’J
A Writesets d%
oo oo

(b) Step 2: All the state writesets update Merkle tree and proofs are aggregated
recursively.

Figure 2: Workflow of Risc Zero executing a Move smart contract to compute
a new Merkle root representing the updated state.

Aptos [2] or Sui [7]. While direct ZK proving of Move bytecode execution
will be added at a later stage, this approach allows us to establish a secure
foundation for ZK-based Move execution quickly. The reason this approach
allows for getting to market faster is because the Move VM is written in Rust
which can be compiled and used in riscO with minimal modification. This
works because the Rust code can be compiled to the RISC-V instruction set
architecture (ISA) and within the zkVM, the RISC-V code is executed in
a ZK-friendly environment, generating cryptographic constraints that model
the computational steps. Risc Zero’s ZK-Proof system then takes these con-
straints and produces a succinct ZK-Proof, attesting to the correct execution
of the Move smart contract transaction.

The Zero Knowledge execution process within Risc Zero involves the in-
teraction between a non-ZK Host environment and a ZK-friendly Guest en-
vironment, as depicted in Figure 2. The Host retrieves all necessary state
details from a Sparse Merkle Tree [10] representation and transmits them to
the Guest. The goal of the ZK execution is to perform the state transition by

taking as input the current state root together with a batch of transactions,
and producing as output the new state root after the transactions in that
batch have been executed. The ZK execution proceeds in two steps.

First, all transactions (deployment of new Move contracts, or executions
on existing ones) in the batch are executed in parallel on separate Guests.
Within each Guest, the Move smart contract is executed by running the Move
virtual machine inside a ZK computation model. The output from each of
these executions is a changeset containing the state changes to be applied
across different account resources. If there are read/write conflicts caused
by the parallel execution then some transactions will need to be re-executed
with a state that includes the changes from earlier transactions in the batch.
Once the batch finishes processing we will have a proof of the execution for
each transaction in the batch.

Then in the second step of the ZK execution we use risc0’s recursive
ZK-proving ability to include all those individual proofs into a single proof
for the whole batch. This combined proof also includes applying all the
changes to the state from the individual changes sets and computing the
updated Merkle root. This updated root, along with the ZK proof that is
was correctly produced, is the output of the ZK execution.

3.2 Phase 2

While the initial Moved architecture relies on Risc Zero’s general zkVM, we
plan to implement Move-optimized ZK execution in a future phase.

Move Bytecode Level ZK Execution. This involves building a Moved
compiler that generates ZK circuit representations (Miden code) tailored for
specific Move bytecode operations. The Miden code will be executed within
a ZK virtual machine, generating granular ZK-Proofs at the individual byte-
code instruction level. This bytecode-level ZK execution model will greatly
reduce the computational resources needed to run the provers because we will
no longer have the overhead of the whole Move interpreter. Critically, these
Phase 2 architectural enhancements will be designed for backward compati-
bility, allowing a seamless transition while maintaining support for the initial
ZK execution pipeline.

Achieving bytecode-level ZK execution requires a specialized compiler
toolchain that can analyze and translate individual Move bytecode instruc-
tions into an optimized ZK assembly representation. Moved’s compiler parses

::Add => ::Instruction(::Add),

::Sub => ::Instruction(::Sub),
::Mul => ::Instruction(::Mul),
::Div => ::Instruction(::U32Div),

Figure 3: Illustration of a straightforward mapping from Move bytecode
instructions to the equivalent Miden ZK assembly representations.

through each Move bytecode operation, methodically converting it into equiv-
alent ZK assembly code tailored for the Miden virtual machine. This conver-
sion process involves a mix of direct bytecode mappings for straightforward
instructions (as illustrated in Figure 3) as well as complex mappings for those
that require more intricate ZK constraint modeling (as the conversion steps
shown in Figure 4).

Once the entire Move bytecode has been transformed into the ZK as-
sembly representation, the resulting code essentially becomes the ZK smart
contract deployed within the Miden execution environment. When users
initiate transactions, the corresponding ZK assembly instructions are loaded
and executed within the ZK virtual machine’s constrained CPU. This ZK ex-
ecution model generates succinct proofs at the granular bytecode operation
level, attesting to the correct computational steps. Additionally, Moved’s
compiler performs further optimizations on the final ZK assembly, enhanc-
ing execution efficiency by minimizing redundant constraints and leveraging
batch processing where applicable.

4 Moved SDK and Gas

Moved Network will provide an SDK in multiple programming languages to
facilitate developers interacting with our system. In our system architecture,
we prioritize seamless integration with widely adopted Ethereum wallets,
facilitating smooth transaction signing and transmission to the Sequencer.
To achieve this, we ensure compatibility with Ethereum RPC endpoints,
enabling robust support for these wallets. It will also query the data avail-
ability layer to get details on accounts. All of this is done by connecting to
the Moved Network’s Ethereum-standard RPC endpoints.

An important aspect of the Moved SDK is accurately computing the gas
costs associated with executing transactions on the rollup network. There

8

fun collatz(n: u32): u32 { vec! [

let count: u32 = 0; Bytecode: :LdU32(0),
while (n != 1) { Bytecode: :StLoc(1),
if (m% 2==0) { Bytecode: :CopyLoc(0), (2)
n=mn/2; Bytecode: :LdU32(1),
} else { Bytecode: :Neq,
n=3x*mn+ 1; Bytecode: :BrFalse(29), (5)
s
count = count + 1; Bytecode: :Branch(2), (28)
I¥ Bytecode: :MoveLoc (1), (29)
count Bytecode: :Ret,
}]
(a) Collatz conjecture sequence cal- (b) Generated Move bytecodes with
culation in Move line numbers in parantheses

proc.collatz

while.true
// if-else logic
end

// Ln 29: Save in memory, exit
mem_store.COLLATZ_INDEX

end
Branch
back to 2
(¢c) Corresponding Control Flow (d) Generated Miden assembly dis-
Graph between lines playing only the branching sections

Figure 4: Move source code (a) is compiled to bytecode with branches (b),
which constructs a Control Flow Graph (c) representing state transitions,
guiding the heuristic generation of optimized Miden assembly (d).

are two primary fee components - the cost of data availability storage and the
cost of settling state proofs on Ethereum Layer 1. Gas fees are denominated
and paid in ETH tokens.

When initiating a transaction, developers can leverage the estimateGas
API which provides an estimate of the gas contribution from their trans-
action to the overall batch size. The base fee is the minimum price per
transaction, primarily accounting for storage costs on Layer 1 and the data
availability layer. Separately, the execution gas is a dynamic fee calculated
by the Moved compiler based on the complexity of the Move bytecode exe-
cution. This portion is paid to the Sequencer and Provers to compensate for
the computational resources consumed in processing transactions and main-
taining operational overheads. Through this multi-component gas model,
Moved ensures an equitable distribution of fees across different layers of the
rollup architecture.

5 Conclusion

The Moved rollup represents a groundbreaking integration of the Move pro-
gramming language with Ethereum’s liquidity and network effects through
a novel zero-knowledge architecture. By enabling secure off-chain computa-
tion of Move smart contracts while ensuring validity on Ethereum, Moved
overcomes scalability limitations plaguing existing Move blockchains. With
a robust ZK virtual machine core optimized for efficient Move bytecode exe-
cution, and a decentralized rollup design prioritizing modularity, Moved es-
tablishes a paradigm shift for high-throughput, trustless application develop-
ment. As adoption grows, Moved will cultivate an interconnected ecosystem
allowing developers to seamlessly access Ethereum’s mature liquidity sources
while building on Move’s security principles, driving blockchain scalability
into uncharted frontiers.

References

[1] M. Al-Bassam. Lazyledger: A distributed data availability ledger with
client-side smart contracts, 2019.

[2] Aptos Labs. The aptos blockchain: Safe, scalable, and upgrade-

10

[10]

[11]

[12]

able web3 infrastructure, 2022. URL https://aptosfoundation.org/
whitepaper/aptos-whitepaper_en.pdf.

S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki,
A. Pott, S. Qadeer, Rain, D. Russi, S. Sezer, T. Zakian, and R. Zhou.
Move: A language with programmable resources, 2020. URL https:

//developers.diem.com/docs/technical-papers/move-paper. Ac-
cessed on 2024-03-20.

J. Bruestle, P. Gafni, and the RISC Zero Team. Risc zero zkvm:
Scalable, transparent arguments of risc-v integrity, Aug 2023. URL
https://dev.risczero.com/proof-system-in-detail.pdf.

V. Buterin. Ethereum: A next-generation smart contract and decentral-
ized application platform, 2014. URL https://github.com/ethereum/
wiki/wiki/White-Paper.

P. Daian. Analysis of the dao exploit. http://hackingdistributed.
com/2016/06/18/analysis-of-the-dao-exploit/, 2016. Accessed:
2024-03-20.

Mysten Labs. The sui smart contracts platform, 2022. URL https:
//docs.sui.io/paper/sui.pdf.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Dec 2008.
URL https://bitcoin.org/bitcoin.pdf.

Nomad. Nomad bridge incident. https://nomad.xyz/incident.html,
2022. Accessed: 2024-03-20.

R. Ostersjo. Sparse merkle trees: Definitions and space-time trade-offs
with applications for balloon. 2016. URL https://www.diva-portal.
org/smash/get/diva2:936353/FULLTEXTO1 . pdf.

Polygon Miden. Stark-based virtual machine. https://github.com/
OxPolygonMiden/miden-vm, 2024.

Solidity. Security considerations, 2016. URL https://docs.
soliditylang.org/en/latest/security-considerations.html. Ac-
cessed on 2024-03-20.

11

https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://aptosfoundation.org/whitepaper/aptos-whitepaper_en.pdf
https://developers.diem.com/docs/technical-papers/move-paper
https://developers.diem.com/docs/technical-papers/move-paper
https://dev.risczero.com/proof-system-in-detail.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
http://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://docs.sui.io/paper/sui.pdf
https://docs.sui.io/paper/sui.pdf
https://bitcoin.org/bitcoin.pdf
https://nomad.xyz/incident.html
https://www.diva-portal.org/smash/get/diva2:936353/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:936353/FULLTEXT01.pdf
https://github.com/0xPolygonMiden/miden-vm
https://github.com/0xPolygonMiden/miden-vm
https://docs.soliditylang.org/en/latest/security-considerations.html
https://docs.soliditylang.org/en/latest/security-considerations.html

[13] Sovereign SDK. The internet of rollups. https://sovereign.xyz. Ac-
cessed: 2024-03-20.

12

https://sovereign.xyz

	Introduction
	Decentralized Rollup
	Zero Knowledge Execution
	Phase 1
	Phase 2

	Moved SDK and Gas
	Conclusion

